
Synthesis of a 4,6-Disubstituted Dibenzofuran β -Sheet Initiator by Reductive Radical Arylation of Benzene

David Crich* and Daniel Grant

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061

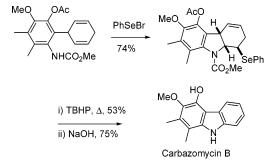
dcrich@uic.edu

Received November 26, 2004

Tributyltin hydride mediated addition of 3-iodosalicylaldehyde to benzene in the presence of catalytic benzeneselenol affords (1,4-cyclohexadien-3-yl)salicylaldehyde. Homologation of the aldehyde group is followed by cycloetherification with dimethyl dioxirane to give a 4,6-disubstituted tetrahydrodibenzofuran. Adjustment of oxidation states and introduction of a second chain by Wittig olefination affords the β -sheet initiator, ethyl 4-(2-*tert*-butoxycarbonylaminoethyl)-6-dibenzofuranpropanoate.

We have recently described a process whereby cyclohexadienyl radicals, produced on rapid addition of aryl radicals to benzene in a stannane-mediated radical chain reaction, may be trapped by benzeneselenol to give a series of 3-aryl-1,4-cyclohexadienes.¹

$$Ar \bullet + \langle \rangle \longrightarrow Ar - \langle \rangle \bullet eq. 2$$


$$Ar \longrightarrow \bullet + PhSe-H \longrightarrow Ar \longrightarrow + PhSe \bullet eq. 3$$

The complete propagation sequence, described by eqs 1-4, is facilitated by the generation of benzeneselenol in situ from diphenyl diselenide and tributyltin hydride (eq 5),² thereby eliminating the need to handle the noxious selenol itself.

$$Bu_3SnH + PhSeSePh \longrightarrow Bu_3SnSePh + PhSeH eq. 5$$

When the aryl iodide bears a nucleophile in the o-position, subsequent activation of the cyclohexadienyl moiety leads to cyclization and provides a rapid entry into functionalized tetrahydrocarbazoles, dibenzofurans, etc.,³ as illustrated by our synthesis of carbazomycin B (Scheme 1).⁴

SCHEME 1. Synthesis of Carbazomycin B

The phenylselenyl group introduced as electrophile in the carbazomycin synthesis provided a convenient handle for rearomatization, in view of the known oxidation of indolines to indoles by benzeneseleninic acid.⁵ However, the simple elimination of the electrophile in this manner may be viewed as a lost opportunity for the introduction of further functionality in the broader context of complex molecule total synthesis. As a first step in the direction of exploiting this functionality more completely we describe here a synthesis of the β -sheet initiator (13),⁶ from two simple precursors, 2-hydroxy-3-iodosalicyl aldehyde and benzene.

Although 3-iodosalicyl aldehyde has been prepared previously by mercuration of salicyl aldehyde followed by iodination,⁷ and by formylation of 2-iodophenol,⁸ we developed an alternative protocol from benzofuran which reproducibly gave good yields of clean product. Thus, metalation of benzofuran and quenching with trimethylsilyl chloride gave 2-trimethylsilylbenzofuran $(1)^9$ in high yield. A second metalation^{10,11} with an iodine quench afforded crude 7-iodo-2-trimethylsilylbenzofuran (2) which, on ozonolysis, gave the desired iodoaldehyde **3** (Scheme 2).

Dropwise addition of a benzene solution of tributytin hydride and AIBN (10 mol %) to a solution of **3** and 20 mol % diphenyl diselenide in benzene at reflux under Ar gave, after evaporation of the volatiles and chromatography over silica gel, 61% of the desired adduct **4** as 5:1 mixture of 1,4- and 1,3-dienes, as is typical for this kind of addition reaction.^{1,3,4} A Wittig reaction afforded the α,β -

(5) (a) Barton, D. H. R.; Luscinchi, W.; Milliet, P. *Tetrahedron* **1985**, *41*, 4727–4738. (b) Ninomia, I.; Hashimoto, C.; Kiguchi, T.; Naito, T.; Barton, D. H. R.; Luscinchi, X.; Milliet, P. J. Chem. Soc., Perkin Trans. *1* **1990**, 529–532.

(6) Tsang, K. Y.; Diaz, H.; Graciani, N.; Kelly, J. W. J. Am. Chem. Soc. **1994**, *116*, 3988–4005.

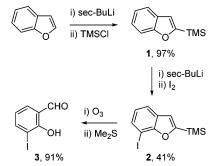
(7) Whitmore, F. C.; Middleton, E. B. J. Am. Chem. Soc. 1923, 45, 1330-1334.

(8) Feldman, K. S.; Eastman, K. J.; Lessene, G. Org. Lett. 2002, 4, 3525–3528.

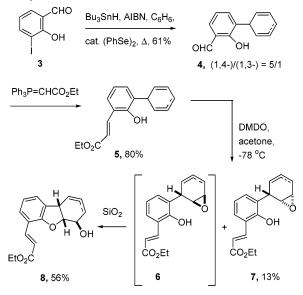
(9) Gill, M. Tetrahedron 1984, 40, 621-626.

(10) Metalation of 2-substituted benzofurans is known to take place at the 7-position: Coture, A.; Grandclaudon, P.; Cires, L.; Ofenberg, H. Synth. Commun. **1997**, 27, 3669–3676. Likewise metalation of dibenzofuran was known to take place adjacent to the oxygen. Indeed, such a metalation is a key step in Kelly's original synthesis⁶ of the present target molecule.

(11) In principle, direct dimetalation of benzofuran at the 2- and 7-positions is possible, but we have found the two step protocol to be more suitable for our purposes: Chadwick, D. J.; Willbe, C. J. Chem. Soc., Perkin Trans. 1 1977, 887–893.


10.1021/jo0478914 CCC: \$30.25 © 2005 American Chemical Society Published on Web 02/09/2005

⁽¹⁾ Crich, D.; Hwang, J.-T. J. Org. Chem. **1998**, 63, 2765–2770. (2) Crich, D.; Jiao, X.-Y.; Yao, Q.; Harwood, J. S. J. Org. Chem.


 ⁽²⁾ Crich, D., 51a0, X.-1., 1a0, Q., Harwood, J. S. J. O'g. Chem.
 (3) Crich, D.; Sannigrahi, M. Tetrahedron 2002, 58, 3319–3322.

⁽⁴⁾ Crich, D.; Rumthao, S. Tetrahedron 2004, 60, 1513-1516.

SCHEME 2. Preparation of 3-Iodosalicylaldehyde

SCHEME 3. **Reductive Radical Dearomatization** and Cycloetherification

unsaturated ester 5 uneventfully. This was exposed to dimethyl dioxirane in acetone at -78 °C¹² followed by concentration under vacuum and chromatography over silica gel when the desired tricyclic system 8 was obtained in 56% yield along with 13% of the epoxide 7 with the incorrect stereochemistry for cyclization. In this last step the dimethyl dioxirane reaction affords a mixture of the two diastereometric alcohols 6 and 7, favoring the former with a ratio of approximately 4:1, with cyclization of 6 taking place on passage over silica gel (Scheme 3). With m-CPBA as oxidant in place of DMDO, a lower selectivity of \sim 2:1 favoring 8 over 7 was observed. The relative stereochemistry of 8 was anticipated on grounds of preferential epoxidation of 4 on the less substituted face followed by ring opening of the epoxide with inversion of configuration; it was confirmed by nOe measurements which revealed the proximity of the two bridgehead hydrogens. Interestingly, the same two hydrogens exhibited a ${}^{3}J$ coupling constant of 8.5 Hz which suggests a near coplanarity and, possibly, a boat conformation for this cyclohexene ring.

As befits a series of reactions beginning from a mixture of skipped and conjugated dienes(4), each of 5-8 was contaminated with a small amount of a regioisomer which was difficult to separate and ultimately of no consequence as the next step involved hydrogenation to

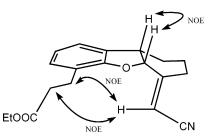
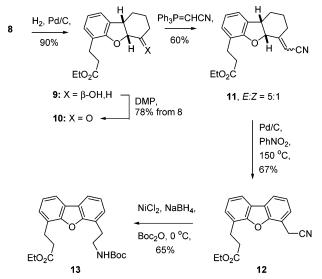



FIGURE 1. Key nuclear Overhauser interactions establishing the stereochemistry of 11E.

SCHEME 4. **Completion of the Synthesis**

9 which was achieved cleanly over palladium on charcoal (Scheme 4). Dess-Martin oxidation of 9 afforded the ketone 10 which, on heating with cyanomethylene triphenylphosphorane afforded the alkene 11 as a 5:1 E/Zmixture. The *E*-configuration of the major isomer in **11** was revealed by nOe interactions of the olefinic hydrogen with the methylene groups of the second side chain; together with the 8.5 Hz coupling of the two bridgehead hydrogens this points to a boat conformation for the exomethylidene substituted ring (Figure 1). Migration of the exo-cyclic double bond into the ring and final aromatization was achieved by heating over palladium characoal in the presence of nitrobenzene as hydrogen acceptor, as described by Cossy.¹³ Finally, reduction of the cyano group with nickel boride in the presence of Boc_2O^{14} afforded the target **13** (Scheme 4). This synthesis of 13 requires eight steps from the iodide 3 making it two steps longer than the existing synthesis from dibenzofuran.⁶ However, the widespread availability of iodophenols and the several stages at which diversity might be introduced render this a more flexible synthesis with the potential for the ready formation of analogues.

In conclusion, the reductive radical dearomatization of benzene followed by a cyclo-etherification reaction provides a powerful means of entry into tetrahydrodibenzofuran derivatives. With suitable manipulation of the functionality resulting from the cyclization step the

⁽¹³⁾ Cossy, J.; Belotti, D. Org. Lett. 2002, 4, 2557–2559.
(14) Caddick, S.; Judd, D. B.; Lewis, A. K. K.; Reich, M. T.; Williams, M. R. V. Tetrahedron 2003, 59, 5417-5423.

chemistry affords a straightforward synthesis of 4,6disubstituted dibenzofurans, illustrated here by the synthesis of Kelly's β -sheet initiator **13**, which nicely complements existing approaches to dibenzofurans¹⁵ and Wacker-type ring closures of 6-(2-hydroxyphenyl)cyclohexene to tetrahydrodibenzofuran.¹⁶ **Supporting Information Available:** Full experimental details and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0478914

⁽¹⁵⁾ Sargent, M. V.; Stransky, P. O. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: Orlando, 1984; Vol. 35, pp 1–81.

^{(16) (}a) Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. J. Am. Chem. Soc. **2004**, *126*, 3036–3037. (b) Hosokawa, T.; Miyagi, S.; Murahashi, S.-I.; Sonoda, A. J. Org. Chem. **1978**, 43, 2752–2757.